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Abstract

The area of distribution of a species is one of the fundamental expressions of its
ecology and evolutionary history. Detailed knowledge of distribution areas is relevant
to address basic questions in biogeography and ecology and in the management of
biodiversity for conservation or sustainable use. The problem we tackle in this paper
is inferring the zones of high potential for the habitat of the species under study, based
on reported sites of presence, where each site is associated with values of covariates,
measured on a discrete scales. We compute the predictive probability that the species
is present at each site, by means of a mixture involving all pairs of covariates. Possible
spatial bias for sites of presence is accounted for. Since the posterior distribution
does not have a closed form, MCMC is implemented. However, we also describe an
approximation to the posterior distribution, which avoids MCMC. Available a priori
information regarding the areas of distribution of the species can be incorporated in a
clear-cut way. In addition we propose a map of uncertainty which allows for greater
insight into the nature of potential areas of distribution. By simulations, we compare
our approach with other standard methods. Two case studies are also presented.

Keywords: Area of distribution, Biodiversity, Mixture model, Predictive probability
map, a priori elicitation.

1 Introduction

All species of animals and plants occupy a more or less well-defined geographical region,
called their areas, or ranges, of distribution. The probability of presence of the species, as a
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function of geographical location, would give rise to a map that highlights areas within the
region where the species is most likely to be present. The area of distribution of a species is
one of the most fundamental expressions of its ecology and evolutionary history (Udvardy
1969; Brown, Stevens and Kaufman 1996; Gaston and Blackburn 2000). Detailed knowledge
of distribution areas is relevant to address basic questions in biogeography and ecology but it
is also useful in the management of biodiversity for conservation or sustainable use. Problems
like the relative roles of ecological and historical factors in shaping them, how the shape of
the area changes with the spatial scale of observation, and the relative importance of the
local (or alpha) and the turnover (or beta) components of biodiversity depend on being
able to estimate in detail such areas. Moreover, such detailed knowledge can be used to
determine the likely routes of economically damaging invasive species, the areas best suited
for conservation, the regions where given activities can endanger protected species, and so
on.
Unfortunately for most species the knowledge biologists have about distribution areas

is very rough and often reduced to the few localities where a species has been observed.
Ecologists and biogeographers determine the area of distribution by starting with “points”
(in practice, localities) where the species has been registered or observed. A number of
informal (very seldom formal, see Jennrich and Turner 1969; Rapoport 1975) procedures are
used to extrapolate from a cloud of points in the geographical space to a set of polygons that
represent the area of distribution (Udvardy 1969). Generally speaking, such extrapolation
is entirely based on the field experience of the researchers and it is done at a very rough
scale. The fundamental data that biogeographers use to base their extrapolations are the
presence points. Detailed faunistic or floristic studies yield lists of observations of species in
localities. Although very well-studied localities supply, by complement, also with “absence”
information, generally speaking basic data is a set of coordinates providing localities where a
given species has been observed. Absences are mostly inferred from knowledge of the biology
of the species, or from the experience of field biologists. Thus, an important feature of the
data available in this setting, is that one may only be certain of sites of presence, whereas
sites of “absence” are not readily available.
The problem we tackle in this paper is inferring the zones of high potential for the habitat

of the species, based on reported sites of presence. We propose Bayesian methodology for
quantifying the probability that the species is present at each site, given that the sites in
the region possess a known set of physical characteristics: the covariates. This probability
will be estimated using information on sites where individuals of the given species have been
detected, with the capability of incorporating available prior knowledge.
An important feature in this setting is the fact that detected sites of presence typically

occur clustered around roads, or near populated areas. In what follows we refer to this
as spatial bias. Spatial bias deals with heterogeneous distributions of sampled points, in
a geographical sense. Since each site has associated values of additional covariates, any
geographical distribution of points induces a distribution of points in the covariate space.
Points in the covariate space may also be non-uniformly distributed, so in addition, a notion
of covariate bias may also be present. Clearly, covariate bias depends on the nature of spatial
bias and on the distribution of covariates over the whole region of interest.
Assessment of potential zones of presence are based on values of the covariates This

means that even if samples were biased spatially, it is possible that they represent sampled
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covariates that are unbiased. However, in general, we must allow for the fact that covariate
bias may be present, induced by spatial bias. Covariate bias hence governs the probability
that a site with a given set of covariate values appears as a site physically examined, over
the period of observation considered.
In addition, there is the notion of detectability of a species. Even if a site with a high

probability of presence is physically examined for the presence of the species at a given
point in time, the species may not be detected. Detectability is an intrinsic property of the
species, for a given observation procedure implemented in the field. This is interpreted as
the probability of detecting the presence of a species, given that it is present at an observed
site. Probability of observation refers to the probability of actually registering the presence
of a species at a site, once probability of presence, covariate bias and detectability have been
accounted for.
Some methods do exist and in fact have been extensively used for constructing maps of

distribution areas. However, few of these methods are formulated in statistical terms, and
none appear to adequately take into account the available prior information. Methods mostly
used are: Bioclim (Busby 1991), Domain (Carpenter, Gillison and Winter 1993), FloraMap
(Jones and Gladkov 1999), and GARP (Stockwell and Noble 1991; Stockwell and Peters
1999; Peterson and Cohoon 1999; Peterson and Stockwell in press). FloraMap and GARP
(run via internet at http://biodi.sdsc.edu) will be considered for comparisons in this paper.
These algorithms are becoming increasingly popular, not only to address scientific questions
(Peterson, Soberón and Sánchez-Cordero 1999), but also to estimate routes of entrance of
invasive species (Soberón, Golubov and Sarukhán 2001), risk of damage by plague species
(Sánchez-Cordero and Martínez-Meyer 2000) and other applied questions.
In all the above algorithms, the opinion or knowledge of experts is used, a posteriori and

informally, to correct blatant errors, mostly overprediction. Thus the experts often reduce
by hand the surfaces predicted by the mathematical methods without resorting to explicit
methods or criteria. This practice suggests that in applications, prior knowledge or expert
opinion is indeed taken into consideration, although not transparently. One important aspect
of the approach we consider in this paper is that prior knowledge is readily recognized and
utilized in a clear-cut way for the production of relevant maps. In addition to establishing
statistical inference for the map of probabilities of presence, we propose a map of uncertainty
which allows for greater insight into the nature of potential areas of distribution.

2 The Statistical Model

2.1 Notation

The geographical region of interest is assumed to be covered by a regular, square, grid. Let s
be a generic node on the grid. The probability of potential inhabitation at s usually represents
potential over a square centered on s taken to be the same size as a square on the grid. Thus,
in practice, the region is a set R of nodes specified by the grid. For each node s ∈ R, an
M-dimensional vector e(s) = (e1(s), . . . , eM(s)) of covariates is assumed to be known. Here
M is the number of physical/climatic covariates, and it is assumed that all of them are either
categorical or measured on discrete scales. Thus, we assume ek(s) ∈ {1, ..., Rk}, 1 ≤ k ≤M ,
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where Rk is the number of possible classes for the k-th covariate. The set of all conceivable
covariate configurations is F = {1, . . . , R1} × . . . × {1, . . . , RM} (although many of them
may not actually occur over R), thus #(F ) =QM

k=1Rk.
Observed data consists of n nodes, s1, ..., sn, corresponding to n exact geographical

locations of positive observation that have been identified with a nearest centerpoint s.
Some of these nodes may be multiple, since two or more observations may have occurred at
different locations sharing the same center s. For any f ∈ F, we denote by C(f) the number
of nodes in the sample such that e(si) = f , 1 ≤ i ≤ n. We use the notation C = (C(f))f∈F ,
to represent the vector of all counts, arranged according to F ’s lexicographic order. Notice
that

P
f∈F C(f) = n, and that many of the elements of C may actually be zero.

For a given node s, let us be a binary random variable which takes on the value 1 if
the species is present at the site, and the value 0 otherwise. The probability P (us = 1), as
a function of s, constitutes the map of probabilities of presence for the species over R. A
fundamental notion is that presence is determined by covariates, rather than geographical
location. Let U = (U1, . . . , UM) be the vector of covariate values tacitly selected by the
species when it makes itself present. We interpretU to be a random vector. The fundamental
assumption that enables inference of areas of high potential from reported sites of presence
via the consideration of covariates is that

P (us = 1) = P{U = e(s)}. (1)

To incorporate sampling bias, let δ(s) denote the probability that node s is examined
for presence within the timeframe of study. This is spatial bias, and induces “covariate
bias”, which we now denote by v(f). This last quantity is the probability that a node
having value f for the covariate vector is physically examined for presence. The relationship
v(f) = 1 − Qs:e(s)=f(1 − δ(s)) is assumed, essentially meaning that nodes with constant
covariates are independently visited. In a strict sense this may not hold, but independence
does not seem too stringent. One does not intentionally plan to consider nodes having the
same covariate vector as candidates for additional examination. In addition, the distance
between nodes is usually large (e.g. 10—15 km), and therefore having visited a node does
not necessarily increase the chances of visiting a neighbor.
As we have noted, detectability is an inherent property of the species. In general, however,

detectability may also depend on e(s), but statement (1) is also saying that the species tend
to be present at nodes such that e(s) resembles probable values for f. Hence, since the species
tends to be present at nodes of similar covariates, it is sensible to assume approximately that
detectability does not depend on s at all sites where the species is present. Accordingly, let
d denote detectability for a node, that is, d is the (constant) probability of detecting a
species given that it is present at a node. Considerations may be easily made to allow for
non-constant detections, but we will not address them here.
If os denotes a binary variable that takes on the value 1 if a species is observed at node

s, and 0 otherwise, we have that

P (os = 1) = P (us = 1) v(e(s)) d. (2)

The development of the statistical model below reflects the fact that the only observable
quantity in (2) is os, when os = 1. Therefore, the probability of presence is not identifiable
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without first discerning v(e(s)) and d. Our method will assume that v(e(s)) is given exactly
either by assuming uniform sampling over nodes, or by a given input generated by the user
via specification of spatial bias, δ(s). Notice that what is indeed random is U, the value of
the covariates at a recorded site of presence, rather than os itself, which is fixed at the value
1 as a consequence of design.

2.2 Formulation

For f ∈ F, let θ(f) denote the probability that the species is present at a node s such that
e(s) = f, and let θ = (θ(f))f∈F . From (1), we note that θ(e(s)) is the probability ofU = e(s)
given θ, so that θ is actually the parameter of interest. Incorporating this parameterization,
and using (1) and (2) we obtain

P (os = 1 | θ) = P (U = e(s) | θ) v(e(s)) d. (3)

Let N be the total number of nodes examined in the timeframe considered that gave rise
to the n nodes of presence, and (temporarily) assume N is known. If the N sampled nodes
can be considered independent (if θ is assumed as a random variable a weaker assumption
of exchangeability may be used; see Bernardo and Smith 1994, pp. 167—171) each sampled
node can be viewed as having been randomly grouped into one of #(F ) + 1 bins. The first
#(F ) bins have the possible values of f = e(s) as labels, and being classified into one of
these bins signifies os = 1; the last bin corresponds to a node having resulted in os = 0.
By (3), the probability of a node being classified into bin labeled f is θ(f) v(f) d. This
constitutes a standard multinomial setting, so that if c =(c(f))f∈F is a vector such thatP

f∈F c(f) = n ≤ N , then

P (C = c | θ) = κ

(
1−

X
f∈F

θ(f) v(f) d

)N−nY
f∈F
{θ(f) v(f) d}c(f), (4)

where κ is the normalizing constant N ! {Qf∈F c(f)!}−1[{N −
P

f∈F c(f)}!]−1.
Because n is usually small, most of the observed counts result in zero. This causes the

parameter θ to be very inconvenient, in that it possess an estimation problem with sparse
data. Meaningful reduction in parameter dimensionality is considered next.
Let G be the set of all index pairs (a, b), 1 ≤ a < b ≤ M. To shorten notation, let

J = (a, b) denote a generic pair in G. Let UJ = (Ua, Ub), eJ(s) = (ea(s), eb(s)) and FJ =
{1, . . . , Ra} × {1, . . . , Rb}. For g ∈ FJ , we denote by CJ(g) the number of nodes in the
sample such that eJ(si) = g, and we let θJ(g) = P (UJ = g | θJ), θJ = (θJ(g))g∈FJ ,
CJ = (CJ(g))g∈FJ , and vJ(g) = 1 −Qs:eJ (s)=g

(1 − δ(s)). The object of introducing the J
notation is to point out that if M > 2, there is a corresponding multinomial distribution (4)
for each pair J : If cJ = (cJ(g))g∈FJ is a vector such that

P
g∈FJ cJ(g) = n ≤ N , then

P (CJ = cJ | θJ) = κJ

(
1−

X
g∈FJ

θJ(g) vJ(g) d

)N−n Y
g∈FJ

{θJ(g) vJ(g) d}cJ (g), (5)
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with a corresponding expression for κJ . Let θ
0 = (θJ)J∈G. Now let us assume that J is

actually random, having a distribution π(J), and that conditioned on the value of J, the
probability of presence as a function of covariates in pair J is θJ . The unconditional proba-
bility of presence at node s is then the mixture

θ0(f) = P (us = 1 | θ0) =
X
J∈G

θJ(eJ(s))π(J). (6)

There is a multinomial model for CJ for each value of J , so that observed data is regarded
to be C0 = (CJ)J∈G instead of C.
Notice that by setting θ in (4) to be of the form (6), the model for P (C = c | θ0) is

κ

(
1−

X
f∈F

θ0(f) v(f) d

)N−nY
f∈F
{θ0(f) v(f) d}c(f). (7)

Model (7) amounts to restricting the multinomial bin probabilities in (4) to be of a given
form, (6), via a parameter θ0 (greatly reduced in dimension) and probabilities π(J). The
reduction is based on a mixture of all pairwise interactions. One interpretation of this
restriction is probabilistic: A species is thought of as selecting a pair, J, at random from
G, with probability π(J), and then the probability of presence at any site s is determined
by θJ(eJ(s)). The distribution π(J) may be thought of as summarizing the idiosyncrasy
of the species with regard to its appraisal of a site according to covariates. The relatively
simple structure only allows for resolution up to pairs of covariates, but is compatible with
a principle stating that species focus on a small set of attributes and simple criteria in order
to decide a site for colonization. Although sensible, this principle will require experimental
testing and our model could provide a contrasting hypothesis for such testing. Currently it
is known that for the GARP algorithm, more than about five variables do not add much
predictive power (Peterson and Cohoon 1999). A map depicting the probabilities (6) for each
node is the true map of potential for the species under study. In passing, note that a precise
probabilistic definition for the concept of “potential” at each node s has been established.
This contrasts with the rather lax use of the word “potential” in other approaches.
Regarding N, it is very unlikely that a full record of visited sites is kept, especially

considering historical data, and thus N must be considered to be unknown. However, we
expect C(f) ≈ N θ(f) v(f) d (for large N) and since

P
f∈F θ(f) = 1, we must have N ≈

N∗ =
lP

f∈F C(f)/(v(f) d)
m
. A simple way to proceed, as we do in the following sections,

is to postulate N = N∗ as a working approximation in (7), rather than considering N itself
to be an unknown, nuisance, parameter.

3 Inference

3.1 Predictive probability

We calculate the predictive probability of presence of the species at each node s, P (us =
1 | C0). For each pair of covariates, a prior distribution is postulated for the parameter θJ ,
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denoted by f(θJ). A way to proceed is to consider J as a parameter (random variable) and
take the π(J)’s as its prior distribution. This is the usual procedure in the Bayesian analysis
of mixture models (inclusion of a further hierarchy by taking the π(J)’s themselves as random
is irrelevant because we are assuming an arbitrary distribution for J). The elicitation of f(θJ)
and π(J) is discussed in Section 3.2. We also introduce the notation f(CJ | θJ , J) for the
(multinomial) model (5) and f(θJ | CJ , J) for the posterior distribution given J . Notation
π(J | C0) is used for the posterior probability for pair J .
The law of total probability yields P (us = 1 | C0) =

P
J∈G P (us = 1 | J, C0)π(J | C0).

The quantity P (us = 1 | J,C0) is the predictive probability of presence given J , and is
calculated by

R
P (us = 1 | J,θJ) f(θJ | C0, J) dθJ . Since P (us = 1 | J,θJ) = θJ(eJ(s)),

we obtain by substitution that P (us = 1 | J,C0) = E[θJ(eJ(s)) | C0]. Thus, the predictive
probability at node s is given by

P (us = 1 | C0) =
X
J∈G

E[θJ(eJ(s)) | J,C0)]π(J | C0). (8)

For each pair J we postulate a Dirichlet distribution as prior for θJ , whose expression is

f(θJ) = Γ(αJ)
hQ

g∈FJ Γ(αJ(g))
i−1Q

g∈FJ θJ(g)
αJ (g)−1, where αJ =

P
g∈FJ αJ(g), αJ(g) >

0. The parameter for this distribution is αJ = (αJ(g))g∈FJ . The Dirichlet distribution is
commonly used to model vectors of probabilities. In case of a multinomial model, under
certain general conditions, every prior distribution for parameter θJ can be approximated
by a mixture of Dirichlet distributions (Walley 1996). However, there is no standard closed
form for the posterior distribution resulting from the multinomial model (5) and a priori
Dirichlet given the expressions for the bin probabilities (see expression 10 in Appendix).
Therefore, one needs to resort to numerical methods (MCMC, as indicated in the Appendix)
to simulate values from the posterior of θJ to obtain the quantities E[θJ(eJ(s)) | J,C0)]
and π(J | C0) involved in (8). The quantity π(J | C0) can be interpreted as the posterior
probability that species assigns to pair J in its preference about colonizing R.
However we discovered an alternative to avoid MCMC, by taking a Dirichlet with parame-

ters X∗J +αJ , where X
∗
J = (X

∗
J(g))g∈F with X

∗
J(g) = CJ(g) (vJ(g) d)

−1, as an approximation
to the exact posterior distribution. Inspired by the observation that X∗

J(g) represents an
approximation to the actual multinomial count related to the cell probability θJ(g), we
would obtain the mentioned Dirichlet as a “posterior” (note that the formal consideration
of an alternative model of this type for the CJ(g)’s would entail the identification of an
unknown normalization dependant on θJ). The required expected value in (8) is given by
E[θJ(eJ(s)) | J,X∗J ] = [X∗

J(eJ(s)) + αJ(eJ(s))][N + αJ ]
−1. The closed-form calculation of

π(J | C0) is shown in the Appendix. As far as the approximation is concerned, what is
relevant is that, by examining the distributions f(θJ | CJ) and f(θJ | X∗J), we observe (nu-
merically) that the corresponding expected values, E[θJ(eJ) | J,CJ ] and E[θJ(eJ) | J,X∗J ]
are virtually equal. The approximation device produces slightly smaller marginal poste-
rior variances. Certainly, the mathematical tractability of f(θJ | X∗J) (a Dirichlet) is more
appealing. We compare both approaches in Section 4.
In order to display the resulting map, we consider the arbitrary partition Ij = ((j−1)/10,

j/10], 1 ≤ j ≤ 10, and a color scale to plot the predictive probability P (us = 1 | C0) at each
node. That is, we plot node s with the color associated with interval Ijs, where P (us = 1 |
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(a) (b)

Figure 1: (a) a priori regions provided by the user for species Coccothrinax readii. P
represents a region where the user is quite certain that the species is present, A where the
user is quite certain that the species is not present, and I the complement of these two. (b)
Resulting a priori potential.

C0) ∈ Ijs . We also evaluate IJ(s) =
R
Ijs
f(θJ(eJ(s)) | C0) dθJ(eJ(s)). The quantity IJ(s)

is the posterior probability that θJ(eJ(s)) lies in Ijs, and motivated by (8), the quantity
I(s) =

P
J∈G I

J(s)π(J | C0) provides a level of certainty about the potential (predictive
probabilities) plotted in the first map. It depends both on the posterior distribution of each
J and on the partition used to display the first map, and may be displayed using a gray-scale
on the same partition. Maps of uncertainty obtained with MCMC and the approximation
were qualitatively equivalent, even for the most extreme cases (small n, non-informative
prior and non-homogeneous bias, see Figures 2 and 3).
The consideration of a measure of uncertainty in maps may be found in just a handful of

papers, varying in flavor and presentation (see for example, Heikkinen and Högmander 1994,
Högmander and Möller 1995, Diggle, Tawn and Moyeed 1998 or De Oliveira 2000). In our
experience, the usage of the map of certainty (or uncertainty) helps in the interpretation and
understanding of the posterior distribution at hand and leads to more educated conclusions.

3.2 Prior elicitation

In this Section, for fixed J ∈ G, the parameters of the a priori distribution, (αJ(g))g∈FJ and
π(J), are elicited. For the Dirichlet distribution it is a fact that αJ(g) = αJE [θJ(g)] , where
E [θJ(g)] is the prior expected value for θJ(g). That is, the values αJ and E [θJ(g)] should
be elicited. It will be unusual that the expert provides directly values for these quantities,
and a heuristic procedure to obtain them indirectly is proposed. We ask the user, based on
prior experience and knowledge about the species (but not using data at hand), to divide R
into disjoint regions: region P, where it is very likely that the species is present, and region
A, where it is very unlikely that the species is present. The complement, I, is implicitly
defined and represents a region of ambiguity (see Figure 1(a)). Either P, A or both may be
empty.
Consider arbitrary nodes s1 ∈ P, s2 ∈ A and s3 ∈ I. If eJ(s1) = eJ(s2) = eJ(s3), then

8



s1, s2, s3 are called a 3-way contradiction, in the sense that the user’s assessment is putting
the same covariate values in areas with different a priori meaning. Region R is examined
until a 3-way contradiction (if any) is found, and the involved three nodes are excluded. The
examination is repeated, each time with the remaining nodes, until 3-way contradictions are
exhausted. LetR2 ⊂ R be the resulting set. WithinR2 there can be other contradictions: If
nodes s1 ∈ P∩R2, s2 ∈ A∩R2 (or s1 ∈ P∩R2, s2 ∈ I∩R2 or s1 ∈ A∩R2, s2 ∈ I∩R2) are
such that eJ(s1) = eJ(s2) then s1, s2 are called a 2-way contradiction. Following a similar
procedure, 2-way contradictions are removed from R2 and the remaining nodes conform the
set R1 of non-contradictory nodes. Notice that R1 is not uniquely determined, because a
node can be involved in several 3-way and/or 2-way contradictions, and the order in which
contradictions are excluded is arbitrary. Nevertheless, the relevant information contained in
R1 is #(R1), which is independent of the elimination sequence. For further details of this
elicitation process, see Argáez-Sosa, Christen and Nakamura (In Prep.).
The set R1 contains the non-contradictory information in the covariates given by the

user. One interpretation of parameter αJ > 0 is the amount of information contained in
the prior distribution (Gelman, Carlin, Stern and Rubin 1995, p. 76). Since the relevant
information for establishment of the species depends on values of the covariates, we are thus
motivated to define αJ = #(R1) [#(R \R1)]

−1, which takes on values in the range (0,∞).
In the absence of prior information (that is, I = R), one would set αJ(g) = 1ÁRaRb, a well
accepted non-informative prior.
Regarding elicitation of E [θJ(g)] , the idea is to determine the probability of presence for

each g ∈ FJ that the user has (implicitly) specified by delimiting P,A and I. By postulating
that “very likely” and “very unlikely” in the query above signify probabilities of .95 for P,
.05 for A and .5 for I (denoting ambiguity), we define

wJ(g) =
(.95)#{s ∈ P : eJ(s) = g}+ (.5)#{s ∈ I : eJ(s) = g}+ (.05)#{s ∈ A : eJ(s) = g}

# {s ∈ R : eJ(s) = g} .

Using these values we normalize and establish E [θJ(g)] = wJ(g)
hP

g0∈FJ wJ(g
0)
i−1

. Finally,

we elicit π(J). Since αJ is the quantity of information contained in the prior for each J , a
sensible value for π(J) is found by normalizing the αJ ’s, namely π(J) = αJÁ

P
J 0∈G αJ 0.

Heuristic verification that elicitation is made sensibly is to calculate the a priori maps of
potential, by means of P (us = 1) =

P
J∈GE [θJ(eJ(s))] π(J). By inspection, we verify that

contours of P (us = 1) roughly coincide with the areas P, A and I established by the user
(See Figures 1(a) and (b)).

4 Simulation Study

A simulation study is considered to examine peculiarities of our methodology and alternative
methods such as Domain and FloraMap. The physical region and corresponding covariates
will be quite real–the Yucatan Peninsula in Mexico–but the actual sites of presence of a
fictitious species will be simulated. A regular grid of 761 nodes covers this region, separated
approximately by 12 km. Three covariates are considered on this grid: mean temperature
(5 levels), mean rainfall (10 levels) and vegetation type (11 levels).
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Our fictitious species is postulated to prefer an “ideal” climate, µ = {µ1, µ2, µ3}. In order
to prescribe how probability of presence depends on e(s), and to incorporate the notion that
the species’ probability of presence decreases as the climate departs from its ideal value, we
set

P (us = 1) = e
−1
2
(µ−e(s))tA(µ−e(s)) (9)

in the simulations. Note that model (9) is not a member of the family of models we have de-
veloped in our methodology. This is intentional. The proposed methodology, when fed with
simulated data from (8) gives satisfactory results and we do not document those examples
here. Instead, we here exemplify how procedures react to data generated by alternative real-
ities that represent types of maps typically latent in biological applications. The symmetric
matrix A = (ahl), 1 ≤ h, l ≤ 3 allows for structure regarding interactions in the components
of e(s). By varying µ and A we are able to simulate species with varying degrees of sensi-
tivity to an ideal climate. In the simulation study, the function (9) may thus be regarded as
“reality”.
Spatial bias is obtained by assigning a probability of visiting a node as inversely propor-

tional to its distance to the nearest road, and covariate bias is defined by using the expression
for ν(f) given in Section 2. We reproduce this fact by considering main highways on the
Peninsula.
Data for simulations were generated by superimposing (9) and the spatial clustering

induced by highways. A species is present at a node s according to probabilities (9), the
site s is visited by human observers with a probability inversely proportional to the distance
from s to the nearest road, and an observation of the species is recorded with probability
d (d is fixed at 1 in what follows). Spatial bias is tuned in the simulations so that the
(random) number n, has a desired order of magnitude. This simulation scheme produces
spatial clustering that is strikingly akin to actual observed records of presence for species.
We compare our results with “reality” and with results obtained with alternative methods

FloraMap and Domain. In addition, we produce the uncertainty map as explained in Section
3.1. Maps of potential using Bioclim and GARP were also obtained, but are not presented
here because these methods over-estimate and output practically all of the Yucatan Peninsula
as high potential in all cases.
We only display two representative examples (Figures 2 and 3). The first example rep-

resents a species with high sensitivity (a11 = 1, a12 = .9, a13 = .85, a22 = 1, a23 = .9,
a33 = 1) and the second example a species with low sensitivity (a11 = 1, a12 = .6, a13 = .3,
a22 = 1, a23 = .1, a33 = 1). The idealized potential may be found in Figures 2(a) and 3(a).
In both cases, the scenarios are difficult, in that there is spatial bias, non—informative prior
information, and a small sample size.
In Figures 2(b) and 3(b) the estimated potential map for each scenario is depicted. In

both figures the presence of record sites located far away from the real high potential area
are noted. Our method does not produce a high potential area around those sites, unlike
FloraMap (Figures 2(e) and 3(e)) and Domain (Figures 2(f) and 3(f)). Moreover, maps
depicted in Figures 2(c)—(d) and 3(c)—(d), show a low level of uncertainty for those sites. We
also observe that low potential probability areas are associated with a low level of uncertainty.
Our uncertainty maps depict that potential probabilities of about .5 are associated with the
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highest levels of uncertainty, resembling the standard setting of estimation of a binomial
proportion.
An extensive simulation study may be found in Argáez—Sosa et al. (In Prep.). Our

methodology appears to behave correctly in all reasonable situations (e.g. 1 holds, non
extreme spatial bias and priors not grossly in error), and also seems to be robust to isolated
sites of presence located far away (geographically speaking) from the main area of high
potential. These sites prompted Domain and FloraMap into determining high potential
for a significant area around these points. The method also appears to be robust to the
spatial bias introduced by roads and towns, because the region of high potential is recovered
reasonably well despite the clustering of points of presence. Both Domain and FloraMap
tend to over-estimate due to spatial bias. As expected, when the sample size increases, the
map of uncertainty tends to a region with low uncertainty.
Regarding the differences for the maps of uncertainty produced by the exact posterior

(simulated using MCMC) and with the Dirichlet approximation, the maps of uncertainty
found in Figure 2(c)—(d) and 3(c)—(d) do not appear to have substantial differences that
would lead to qualitatively different interpretations. This suggests that the Dirichlet ap-
proximation is useful.

5 Case Studies

5.1 Coccothrinax readii

The region of interest, R, is the Yucatan Peninsula in Mexico. The species under study,
Coccothrinax readii, is an endemic plant belonging to the palmacea family, regarded as an
endangered species. This species has been reported in 67 localities. The regular grid is as
described in the simulations, and the matrix containing the values of covariates for each node
of the grid was obtained from researchers in botany at Centro de Investigación Científica de
Yucatán (CICY). The physical covariates used on the grid are: humidity (17 levels), mean
temperature (5 levels), mean rainfall (10 levels), type of vegetation (11 levels), and type of
soil (17 levels), which produces ten pairs of covariates.
The a priori zones P and A, as produced by the researchers are shown in Figure 1(a).

The resulting maps using our method, the uncertainty map and Domain and FloraMap
outputs, are shown in Figure 4(b), (c) and (d), respectively.
We also computed the quantities π(J | C0) for each J . In this application pair J defined

by temperature-soil type produces π(J | C0) = .9889, and for pair J 0 defined by humidity-
temperature π(J 0 | C0) = .0111. Other pairs produce a posterior probability less than .0002.
The potential map was observed by experts concerned with this species. Their appraisal

on these zones of high potential given by our method is that they are quite sensible. Recent
considerations suggest that this species is, at present, expanding its area of distribution.
The zones highlight by our method coincides with the expert’s assessment about the areas
where it is suspected that the species can colonize. Another comment regards the isolated
reported site towards the center of the Peninsula. The validity of that site is actually under
discussion. The combination of potential map in Figure 5(a) (producing a low predictive
probability), with the uncertainty map in Figure 5(b) (producing a low level of uncertainty
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(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) Idealized potential produced by the model in (9). (b) Simulated points of
presence (n = 15) and estimated potential using our method. (c) Map of uncertainty for
the estimated potential using the Dirichlet approximation. (d) Map of uncertainty for the
estimated potential for the exact posterior using MCMC. (e) Estimated potential using
FloraMap. (f) Estimated potential using Domain.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Idealized potential produced by the model in (9). (b) Simulated points of
presence (n = 15) and estimated potential using our method. (c) Map of uncertainty for
the estimated potential using the Dirichlet approximation. (d) Map of uncertainty for the
estimated potential for the exact posterior using MCMC. (e) Estimated potential using
FloraMap. (f) Estimated potential using Domain.
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(a) (b)

(c) (d)

Figure 4: (a) Reported sites of presence for the species Coccothrinax readii (n = 67) and
estimated potential using our method. (b) Map of uncertainty for the estimated potential.
(c) Estimated potential using FloraMap. (d) Estimated potential using Domain.

around this site), leads to the suspicion that this record is anomalous.

5.2 Baronia brevicornis

The region of interest is the country of Mexico. Baronia brevicornis is a butterfly, which
has been reported present in 40 localities. The matrix containing the values of covariates
was obtained from the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad
(CONABIO). The regular grid consist of 136,875 nodes, with a separation of 4 km (scale
1:4 000 000). Covariates used on the grid are: climate (50 levels), humidity (9 levels), soil
(79 levels), rain (19 levels), mean temperature (15 levels), maximum absolute temperature
(18 levels), maximum average temperature (19 levels), minimum absolute temperature (20
levels), minimum average temperature (18 levels) and elevation (5 levels). These covariates
lead to consider 45 pairs. The map of a priori information is shown in Figure 5.
Figure 6(a) is the potential map, with the sites of presence, and Figure 6(b) is the map

of uncertainty. The corresponding maps obtained with FloraMap and Domain are Figures
6(c) and 6(d). In this case, the most influential pair is humidity-elevation, with posterior
probability .999.
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Figure 5: a priori region P provided by the user for the species Baronia brevicornis.

Based on the field experience of one of us (JSM), Domain overpredicts the actual or
likely distribution area of B. brevicornis, which is a species strictly associated to the tropical
deciduous forest, a very particular vegetation type. FloraMap produced a slightly less over-
predicted surface, but still including large tracts of unsuitable habitat, where the butterfly
has never been seen. On the other hand our method outlined areas where the likelihood of
presence of B. brevicornis is good without including obvious unsuitable habitat.

6 Discussion

The methodology postulated here has a series of technical advantages over the existing
methodologies. It formally defines “potential”, has a formal background in statistical in-
ference to support it, has a version simple to implement and allows for inclusion of prior
information in a convenient way. It might be argued that the consideration of only pairs
of covariates could be too restrictive. Nevertheless, the mixture model proposed is rather
flexible, reasonably parsimonious and may well approximate higher interactions among co-
variates, as suggested in Section 4. Certainly, the techniques used in this paper may be easily
generalized for higher (3, 4—way, etc.) interactions, but we are not sure that the additional
complexity would reflect in better results.
Bioclimatic predictive algorithms are becoming indispensable in many areas of ecological

work. The need to predict the potential or actual distribution of species is acute in conserva-
tion work, invasive species management, bioprospecting, etc. From a user’s perspective, the
method we present here has several advantages over existing algorithms. In the first place, its
Bayesian nature allows the inclusion of a large body of knowledge that experienced biologists
have, but could not be used by previous methodologies. In second place, the preliminary ex-
amples we have analyzed suggest that our method suffers less from overprediction that some
existing alternatives, like FloraMap or Domain. Field checking the predictions of distribu-
tion algorithms is expensive and time-consuming. More work to assess the relative advantage
of our method will be required, but our preliminary results are encouraging. Finally, the
probabilistic logic of our algorithm is different from the approaches of Domain (clustering),
or FloraMap (principal components). Perhaps our method will consistently provide better
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(a) (b)

(c) (d)

Figure 6: (a) Reported sites of presence for the species Baronia brevicornis (n = 40) and
estimated potential using our method. (b) Map of uncertainty for the estimated potential.
(c) Estimated potential using FloraMap. (d) Estimated potencial using Domain.
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answers than the alternatives, but if this is not the case, having different tools to tackle the
same class of problems will give flexibility to those requiring to predict biological species
distributions.
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A Appendix

A.1 Approximating π(J | C0)
It is easy to see that

π(J | C0) ∝ π(J)

Z
f(CJ | J,θJ) f(θJ) dθJ .

Having an approximation f(θJ | X∗J) for f(θJ | C0), by Bayes theorem we see thatZ
f(CJ | J,θJ) f(θJ) dθJ ≈ f(CJ | J,θ

0
J) f(θ

0
J)

f(θ0J | X∗J)
for some fixed value θ0J (where the approximation is good). From this we obtain

π(J | C0) = π(J)
N !Γ(αJ)

(N − n)!Γ(N + αJ)

Y
g∈FJ

Γ(XJ(g) + αJ(g))vJ(g)
cJ (g)

Γ(αJ(g))
×

(
1−

X
g∈FJ

θ0J(g)vJ(g)d

)N−n Y
g∈FJ

{θ0J(g)}cJ (g)−XJ (g).

In the examples we took θ0J(g) = [XJ(g) + αJ(g)] [N + αJ ]
−1.

A.2 MCMC

A Metropolis-Hasting (See Robert and Casella 1999) algorithm is implemented. Model
f(CJ | θJ) with a Dirichlet prior produces the joint posterior distribution

f(θJ , J | C0) = π(J)N !Γ(αJ)

(N − n)! Q
g∈FJ

cJ(g)!Γ(αJ(g))

(
1−

X
g∈FJ

θJ(g)νJ(g)

)N−n
× (10)

Y
g∈FJ

θJ(g)
cJ (g)+αJ (g)−1νJ(g)cJ (g).
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With probability p, given the set (θJ)J∈G and pair J at iteration t (namely J (t)), a
candidate J 0 is selected from a Uniform distribution imposed on G. We take J (t+1) = J 0

with probability min
©
1, ρ1(J

(t), J 0)
ª
, where

ρ1(J, J
0) =

( Q
g∈FJ

cJ(g)!

)
π(J 0)Γ(αJ 0)

Q
g∈FJ0

Γ(αJ 0(g))

(
1− P

g∈FJ0
θJ 0(g)νJ 0(g)

)N−n
( Q
g∈FJ0

cJ 0(g)!

)
π(J)Γ(αJ)

Q
g∈FJ

Γ(αJ(g))

(
1− P

g∈FJ
θJ(g)νJ(g)

)N−n ×

Q
g∈FJ0

θJ 0(g)
cJ0(g)+αJ0(g)−1νJ 0(g)cJ0(g)Q

g∈FJ
θJ(g)cJ (g)+αJ (g)−1νJ(g)cJ (g)

.

On the other hand with probability 1−p, given a fixed J, a candidate θ0J is selected from
the Dirichlet distribution with parameters X∗J +αJ (that is, the approximation used for the
posterior; since this approximation is commonly good, this results in a high acceptance rate
for this independent proposal and makes the MCMC quite efficient). We take θ(t+1)J = θ0J
with probability min

n
1, ρ2(θ

(t)
J ,θ

0
J)
o
, where

ρ2(θJ ,θ
0
J) =

1−
P
g∈FJ

θ0J(g)νJ(g)

1− P
g∈FJ

θJ(g)νJ(g)


N−n Y

g∈FJ

µ
θJ(g)

θ0J(g)

¶XJ (g)−cJ (g)
.

That is, the transition kernel considered is K(η, η0) = pK1(η, η
0) + (1 − p)K2(η, η

0),
η = (J,θJ), p ∈ (0, 1). We arbitrarily chose the value p = .5.
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